An Improved Estimate of the Degree of Monotone Interpolation

ELI PASSOW

Mathematics Department, Temple University, Philadelphia, Pennsylvania 19122 Communicated by T. J. Rivlin Received July 27, 1974

1. INTRODUCTION

Let $0 = x_0 < x_1 < \cdots < x_k = 1$ and let y_0, y_1, \dots, y_k be real numbers such that $y_{j-1} \neq y_j$, $j = 1, 2, \dots, k$. It is a result of Wolibner [7], Kammerer [2], and Young [8] that there exists an algebraic polynomial p(x) such that:

(i)
$$p(x_j) = y_j$$
, $j = 0, 1, ..., k$, and

(ii) p(x) is increasing on $I_j = (x_{j-1}, x_j)$ if $y_j > y_{j-1}$ and decreasing on I_j if $y_j < y_{j-1}$, j = 1, 2, ..., k.

A polynomial with properties (i) and (ii) is said to interpolate *piecewise* monotonely; in case $y_j > y_{j-1}$ for all j (or if $y_j < y_{j-1}$ for all j), p(x) is said to interpolate monotonely. The smallest degree of a polynomial that interpolates the values $Y = \{y_0, y_1, ..., y_k\}$ at the points $X = \{x_0, x_1, ..., x_k\}$ (piecewise) monotonely is called the *degree of (piecewise) monotone* interpolation of Ywith respect to X, and is denoted by N(X; Y). Passow and Raymon [6] have obtained bounds on N(X; Y). In this note we obtain improved estimates for the case of monotone interpolation.

2. The Main Result

Let $\Delta = \Delta(Y) = \min_{1 \le j \le k} |y_j - y_{j-1}|, \alpha = \alpha(X) = \min_{1 \le j \le k} (x_j - x_{j-1}),$ $M = M(X; Y) = \max_{1 \le j \le k} |(y_j - y_{j-1})/(x_j - x_{j-1})|, P_n = \text{the set of all}$ algebraic polynomials of degree $\le n$, and $E_n(f) = \inf\{||f - p||_{\infty}, p \in P_n\}.$

For f monotone increasing, let $E_n^*(f) = \inf\{||f - p||_{\infty}, p \in P_n, p'(x) \ge 0$ on [0, 1]}.

In [6] it was shown that if $y_0 < y_1 < \cdots < y_k$, then there exists a constant A_0 such that $N(X; Y) \leq A_0(M/\Delta)$. Our improved estimate is as follows.

THEOREM. Let $y_0 < y_1 < \cdots < y_k$. Then there exist constants, A_r , $r = 0, 1, 2, \dots$, such that

$$N(X; Y) \leq \inf A_r(M/\alpha^r \varDelta)^{1/(r+1)}.$$

Remark 1. The constants in the Theorem satisfy $A_0 \leq A_1 \leq A_2 \leq \cdots$. On the other hand,

 $(M/\alpha^r \varDelta)^{1/(r+1)} \leq (M/\alpha^{r-1} \varDelta)^{1/r}$ for any configuration.

Remark 2. The proof in [6] was based on the degree of monotone approximation of piecewise linear functions, using estimates of Lorentz and Zeller [4]. They, individually, generalized this result in [3, 9], and we apply these extensions to the monotone approximation of splines with specified deficiency.

LEMMA 1 [3, p. 209]. If $f \in C^1[0, 1]$ is increasing, then $E_n^*(f) \leq (C/n) \omega(f'; 1/n)$, where ω is the modulus of continuity of f and C is an absolute constant.

LEMMA 2 [9, p. 524]. Let f be increasing on [0, 1] and assume that $E_n(f) = O(n^{-3})$. Suppose that f' has a finite number of zeros in [0, 1] and that $E_{n-1}(f') = O(nE_n(f))$. Then $E_n^*(f) = O(E_n(f))$.

Proof of Theorem. Let $\epsilon = \Delta/4$ and let T be the set of the 2^{k+1} sets of points $\{y_0 \pm \epsilon, y_1 \pm \epsilon, ..., y_k \pm \epsilon\}$, where the choices of \pm are made independently. We enumerate the sets in T and denote the *i*th set by $S_i = \{z_0^{(i)}, z_1^{(i)}, ..., z_k^{(i)}\}$. Note that our choice of ϵ guarantees that $z_{j-1}^{(i)} < z_j^{(i)}$, $i = 1, 2, ..., 2^{k+1}, j = 1, 2, ..., k$. For each *i* we now construct a spline f_i of degree 2r + 1, with deficiency r + 1, having the following properties:

(a)
$$f_i(x_j) = z_j^{(i)}, j = 0, 1, ..., k;$$

(b)
$$f_i^{(s)}(x_j) = 0, j = 0, 1, ..., k, s = 1, 2, ..., r$$

- (c) $f_i \in P_{2r+1}$ on each subinterval $[x_{j-1}, x_j], j = 1, 2, ..., k;$
- (d) $f_i \in C^r[0, 1]$.

The existence of f_i was proved in [5], and it was also shown there that f_i is monotone. We will now show that $f_i^{(r)} \in \text{Lip}_A 1$, where $A = B_r M / \alpha^r$, B_r a constant. The three following results are immediate.

LEMMA 3. Let $q(x) = a_1 \int_0^x t^r (1-t)^r dt + y_1$, where $a_1 = (y_2 - y_1)/\int_0^1 t^r (1-t)^r dt$. Then q is the unique polynomial in P_{2r+1} satisfying $q(0) = y_1$, $q(1) = y_2$, $q^{(s)}(0) = q^{(s)}(1) = 0$, s = 1, 2, ..., r.

COROLLARY. p(x) = q((x - a)/(b - a)) is the unique polynomial in P_{2r+1} satisfying $p(a) = y_1$, $p(b) = y_2$, $p^{(s)}(a) = p^{(s)}(b) = 0$, s = 1, 2, ..., r.

LEMMA 4. Let $M_r = \max_{0 \le x \le 1} |(d^{r+1}/dx^{r+1}) \int_0^x t^r (1-t)^r dt|$, and let p be as in the corollary. Then,

$$\max_{a \leq x \leq b} |p^{(r+1)}(x)| = (a_1 M_r / (b-a)^{r+1}) = ((y_2 - y_1) M_r' / (b-a)^{r+1}),$$

where $M_r' = M_r / \int_0^1 t^r (1-t)^r dt$.

Now $f_i(x_j) = z_j^{(i)}$, and $z_j^{(i)} - z_{j-1}^{(i)} \leq (y_j + \epsilon) - (y_{j-1} - \epsilon) = (y_j - y_{j-1}) + 2\epsilon \leq (3/2)(y_j - y_{j-1})$. Thus, by Lemma 4,

$$\max_{x_{j-1} \leq x \leq x_j} |f_i^{(r+1)}(x)| \leq \frac{3}{2} \frac{(y_j - y_{j-1}) M_r'}{(x_j - x_{j-1})^{r+1}}$$
$$= \frac{3}{2} \left(\frac{y_j - y_{j-1}}{x_j - x_{j-1}}\right) \frac{M_r'}{(x_j - x_{j-1})^r}$$
$$\leq \frac{3}{2} \frac{MM_r'}{\alpha^r} = \frac{B_r M}{\alpha^r}.$$

The bound is independent of *j*. Hence, $f_i^{(r)} \in \text{Lip}_A 1$, where $A = B_r M / \alpha^r$.

Case 1. r = 1. By Lemma 1, $E_n^*(f_i) \leq CB_1 M/\alpha n^2$. We now approximate each f_i to within $\Delta/8 = \epsilon/2$ by a monotone polynomial. By Lemma 1 this can be accomplished by a polynomial q_i whose degree does not exceed $(8CB_1 M/\alpha \Delta)^{1/2} = A_1 (M/\alpha \Delta)^{1/2}$. The vector $(y_0, y_1, ..., y_k)$ is thus contained in the convex hull of the vectors $(q_i(x_0), q_i(x_1), ..., q_i(x_k)), i = 1, 2, ..., 2^{k+1}$. Hence there exists a convex linear combination of the q_i 's which gives rise to a polynomial p which interpolates Y monotonely. Since the degree of each $q_i \leq A_1 (M/\alpha \Delta)^{1/2}$, we have $N(X; Y) \leq A_1 (M/\alpha \Delta)^{1/2}$.

Case 2. $r \ge 2$. Note that f_i' has a finite number of zeros in [0, 1]. Moreover, since $f_i \in C^r[0, 1]$ and $f_i^{(r+1)}$ has jump discontinuities in [0, 1], $E_n(f_i)$ has exact order of magnitude $1/n^{r+1}$, while $E_{n-1}(f_i')$ has exact order of magnitude $1/n^r$ [1, p. 14]. Thus $E_{n-1}(f_i) = O(nE_n(f_i))$, so that f_i satisfies the conditions of Lemma 2. Hence $E_n^*(f_i) = O(E_n(f_i)) \le (C_r B_r M/\alpha^r n^{r+1})$ [1, p. 13]. The proof now proceeds as in Case 1, and we obtain $N(X; Y) \le A_r(M/\alpha^r \mathcal{A})^{1/(r+1)}$.

EXAMPLE. Consider monotone interpolation of $f(x) = x^{1/2}$ on [0, 1] at equally spaced nodes, $x_j = j/k$, j = 0, 1, ..., k. Then $M = k^{1/2}$, $\alpha = 1/k$ and $\Delta \ge 1/2k$. Thus the result of [6] yields $N(X; Y) \le A_0(M/\Delta) \le 2A_0k^{3/2}$. We obtain $N(X; Y) \le \inf_{r=0,1,2,...} A_r[2k^{(r+(3/2))}]^{1/(r+1)}$.

ELI PASSOW

REFERENCES

- 1. R. A. DEVORE, "The Approximation of Continuous Functions by Positive Linear Operators," Springer-Verlag, Berlin, 1972.
- 2. W. J. KAMMERER, Polynomial approximations to finitely oscillating functions, *Math. Comput.* 15 (1961), 115–119.
- 3. G. G. LORENTZ, Monotone Approximation, *in* "Inequalities III," pp. 201–215. Academic Press, New York, 1972.
- 4. G. G. LORENTZ AND K. L. ZELLER, Degree of approximation by monotone polynomials, I, J. Approximation Theory 1 (1968), 501–504.
- 5. E. PASSOW, Piecewise monotone spline interpolation, J. Approximation Theory 12 (1974), 240-241.
- E. PASSOW AND L. RAYMON, The degree of piecewise monotone interpolation, Proc. Amer. Math. Soc. 48 (1975), 409-412.
- 7. W. WOLIBNER, Sur un polynome d'interpolation, Colloq. Math. 2 (1951), 136-137.
- 8. S. W. YOUNG, Piecewise monotone polynomial interpolation, Bull. Amer. Math. Soc. 73 (1967), 642–643.
- 9. K. L. ZELLER, Monotone approximation, in "Approximation Theory," (G. G. Lorentz, Ed.), pp. 523–525, Academic Press, New York, 1973.