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1. INTRODUCTION

Let 0 = xy <x <+ <<x; =1 and let y,, 1 ,..., ¥ be real numbers
such thaty, , % y;,j = 1, 2,..., k. Itis a result of Wolibner [7], Kammerer [2],
and Young [8] that there exists an algebraic polynomial p(x) such that:

(1) p(xj) =Y aj = Oa l,..,, kn and
(i) p(x)is increasing on I; = (x;_;, x;) if y, > y,_, and decreasing on
Lify, <yi1.7=12,...,k.

A polynomial with properties (i) and (ii) is said to interpolate piecewise
monotonely; in case y; > y; 4 for all j (or if y; << y,;_4 for all ), p(x)is said to
interpolate monotonely. The smallest degree of a polynomial that interpolates
the values ¥ = {yy, ¥1,..., %} at the points X = {x;, x; ..., X3} (piecewise)
monotonely is called the degree of (piecewise) monotone interpolation of ¥
with respect fo X, and is denoted by N(X; ¥). Passow and Raymon [6] have
obtained bounds on N(X; ¥). In this note we obtain improved estimates for
the case of monotone interpolation.

2. THE MAIN RESULT

Let 4 = A(Y) = mingcr | ¥ — Yio1 b @ = o(X) = mimge (05 — x5.0),
M = M(X; Y) = maxig< (¥; — yi-)/(X; — X;-9), P, = the set of all
algebraic polynomials of degree << u, and E(f) = inf{}l f — pllw, P € P.}

For f monotone increasing, let E,*(f) = inf{|| f — pllw. PP, p'(x) =0
on [0, 11}.

In [6] it was shown that if y, << y; < -=* << J; , then there exists a constant
Aq such that N(X; Y) << 4(M/4). Our improved estimate is as follows.
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THEOREM. Let y, <y, < =+ < y,. Then there exist constants, A, ,
r=20,1,2,.., such that

N(X; ¥) < inf A(M[ord)HeD,

Remark 1. The constants in the Theorem satisfy A, << 4; < 4, < -+
On the other hand,

(M[ar AY1/+0 < (Mo A/ for any configuration.

Remark 2. The proof in [6] was based on the degree of monotone
approximation of piecewise linear functions, using estimates of Lorentz and
Zeller [4]. They, individually, generalized this result in [3, 9], and we apply
these extensions to the monotone approximation of splines with specified
deficiency.

LemmA 1 [3,p.209). IFf feCYO,1] is increasing, then E,*(f) <
(C/n) w(f'; 1/n), where w is the modulus of continuity of f and C is an absolute
constant.

LemMaA 2 [9, p. 524]. Let f be increasing on [0, 1] and assume that
E(f) = Om3). Suppose that f' has a finite number of zeros in [0, 1] and that

Proof of Theorem. Let e = A/4 and let T be the set of the 25+ sets of
points { ¥, -+ €, ¥; & €,..., ¥ & <}, where the choices of 4- are made indepen-
dently. We enumerate the sets in 7 and denote the ith set by
S; = {2, z{,..., z{}. Note that our choice of € guarantees that z"; < z{?,
i=1,2,.,2%% j=12.. k. For each i we now construct a spline f; of
degree 2r + 1, with deficiency r - 1, having the following properties:

@ filx)=12"j=0,1,...k;
b) %) =0,j=0,1,.,k,s=12..r;
(c) f;€ Py, on each subinterval [x; 4, x;1, j = 1, 2,..., k;
(d) f;ecCo, 11
The existence of f; was proved in [5], and it was also shown there that £; is

monotone. We will now show that f{” e Lip, 1, where 4 —= B,M/«", B, a
constant. The three following results are immediate.

LemMaA 3. Let g(x) = a; fo (1 — 8y dt +y,, where a; = (v, — »)/
_fo t"(1 — t)" dt. Then q is the unique polynomml in Py, satisfying q(0) = y,,
gq(1) = 2, g90) = ¢@(1) =0, s =1,2,.
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COROLLARY. p(x) = g((x — @){(b — a)) is the unigue polynomial in P, 4
satisfying p(a) = y1, p(b) =y, p®N@) = pB) = 0,5 = L, 2.7

LemmA 4. Let M, = maxecues [(dm+Ydxm) [ot7(1 — 2)7 dt |, and let p be
as in the corollary. Then,

max | p"(x)| = (@ M,/(b — ™) = (y: — y) M,[(b — &)™),

where M, = Mr/‘[(l] (1 — ) dt.

Now f,(x;) = 2V, and z{" — ;% <(y; + & — (yia — & = (3 — ¥+
2e < (3/2)(y; — ¥;_1)- Thus, by Lemma 4,

3 =y MY
(r+1} _f__l___
xjg?’iax)%x f (X) 2 (x] - xj IBT -

:i(%’*ya‘fl) G M,

23\x; — x4 i %)

3 MM, BM
Sy = .

2 o ol

The bound is independent of j. Hence, f{" € Lip, 1, where 4 = B, M/«".

Case 1. r = 1.ByLemma 1, E, *(f;) << CB.M/an® We now approximate
each f; to within 4/8 = ¢/2 by a monotone polynomial. By Lemma 1 this
can be accomplished by a polynomial g, whose degree does not exceed
(8CB M|l = A (M[ad)2. The vector (yg, V1 »-.., Vi) is thus contained
in the convex hull of the vectors (g.(x,), g:(x1),-..s qz(xk)) i=1,2,.,28
Hence there exists a convex linear combination of the ¢,’s which gives rise to
a polynomial p which interpolates ¥ monotonely. Since the degree of each

g; < A(MJaAY 2 we have N(X; Y) < A(M/[od)'2,

Case 2. r = 2. Note that f; has a finite number of zeros in [0, 1]
Moreover, since f; € C7[0, 1] and ™Y has jump discontinuities in [0, 1],
E,(f;) has exact order of magnitude 1/n"+%, while £, _,(f;') has exact order of
magnitude 1/n" [1, p. 14]. Thus E,_,(f;) = O(rE,(f)), so that f; satisfies the
conditions of Lemma 2. Hence E,*(f;) = O(E(f)) < (C.BM/on™+1)
{1, p. 13]. The proof now proceeds as in Case 1, and we obtain N(X; ¥) <
A (M or )L/ o0,

ExampLE. Consider monotone interpolation of f(x) = x'/? on [0, 1] at
equally spaced nodes, x; = jlk, j =0,1,..,k. Then M = k2, o = 1/k
and 4 > 1/2k. Thus the result of [6] yields N(X; ¥) << A (M/4) << 24432,
We obtam NX; Y)Y <inf, 4., AJ2kEEIP/rH),
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