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1. INTRODUCTION

Let 0 = Xo < Xl < ... < Xl' = 1 and let Yo, YI ,... , Yk be real numbers
such thatYH # Yi,j = 1,2,... , k. His a result ofWolibner [7], Kammerer [2J,
and Young [8J that there exists an algebraic polynomial p(x) such that:

(i) P(Xi) = Yi , j = 0, 1, ... , k, and

(ii) p(x) is increasing on I j = (Xi-I, Xi) if Yi > Yi-l and decreasing on
Ii if Yi < Yi-l , j = 1,2,... , k.

A polynomial with properties (i) and (ii) is said to interpolate piecewise

monotonely; in case Yi > Yi~l for allj (or if Yi < Yi-l for allj), p(x) is said to
interpolate monotonely. The smallest degree of a polynomial that interpolates
the values Y = {Yo, YI " .. , h} at the points X = {xo , Xl'"'' Xk} (piecewise)
monotonely is called the degree of (piecewise) monotone interpolation of Y
with respect to X, and is denoted by N(X; Y). Passow and Raymon [6] have
obtained bounds on N(X; Y). In this note we obtain improved estimates for
the case of monotone interpolation.

2. THE MAIN RESULT

Let A = A(Y) = minl<Kk IYi - Yi-l i, ex = ex(X) = minl<i<k (Xj - xi_I),
M = M(X; Y) = max1'U<k !(Yi - Yi-I)/(Xi - Xi-I)I, Pn = the set of all
algebraic polynomials of degree ~ n, and En(f) = inf{l!f - p II"" p E Pn}.

Forfmonotone increasing, let En*(f) = inf{llf - p 11""p E Pn ,p'(x) ~ 0
on [0, In.

In [6] it was shown that ifYo < YI < ... < Ylc , then there exists a constant
A o such that N(X; Y) :(: Ao(M/A). Our improved estimate is as follows.
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THEOREM. Let Yo < Yt < ... < Yk. Then there exist constants, Ar ,

r = 0, 1,2,... , such that

N(X; Y) ~ inf A r(M/arL1)I/(r+ll.
r

Remark 1. The constants in the Theorem satisfy Ao ~ Al ~ A 2 ~ ••••

On the other hand,

for any configuration.

Remark 2. The proof in [6] was based on the degree of monotone
approximation of piecewise linear functions, using estimates of Lorentz and
Zeller [4]. They, individually, generalized this result in [3, 9], and we apply
these extensions to the monotone approximation of splines with specified
deficiency.

LEMMA 1 [3, p. 209]. If f E CI[O, 1] is increasing, then En*(f) ~
(Cjn) w(f'; l/n), where w is the modulus ofcontinuity offand C is an absolute
constant.

LEMMA 2 [9, p. 524]. Let f be increasing on [0, 1] and assume that
EnC!) = O(n-S

). Suppose that f' has a finite number ofzeros in [0, 1] and that
En-if') = O(nEn(!)). Then En*(f) = O(En(f))·

Proof of Theorem. Let E = L1/4 and let T be the set of the 27c+1 sets of
points {Yo ± E, Yt ± E, ... , Y'e ± E}, where the choices of ± are made indepen­
dently. We enumerate the sets in T and denote the ith set by
Si = {Z6il , ziil ,..., z~l}. Note that our choice of E guarantees that Zj~1 < zjil,
i = 1,2,... , 27c+l, j = 1,2,... , k. For each i we now construct a spline /;, of
degree 2r + 1, with deficiency r + 1, having the following properties:

(a) /;,(Xj) = zji), j = 0, 1, , k;

(b) f~Sl(Xj) = 0, j = 0, 1, , k, s = 1, 2, ... , r;

(c) /;, E P2r+l on each subinterval [Xj_1 , Xj], j = 1,2,... , k;

(d) /;, E cr[o, 1].

The existence of/;, was proved in [5], and it was also shown there that/;, is
monotone. We will now show that f~rl E LiPA 1, where A = BrM/ar, Br a
constant. The three following results are immediate.

LEMMA 3. Let q(x) = a l J~ t r(1 - t)' dt + Yt, where a l = (Y2 - YI)/
J~ tr(1 - t)' dt. Then q is the unique polynomial in P2r+l satisfying q(O) = Yt,
q(l) = Y2' q(s)(O) = q'sl(l) = 0, s = 1,2,... , r.
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COROLLARY. p(X) = q«X - a)j(b - a») is the unique polynomial in P2T-U
satisfying pea) = Y1 , pCb) = Y2 , p<sl(a) = p(sl(b) = 0, S = 1,2,... , r.

LEMMA 4. Let M r = maxO';;x';;l l(dr+ljdxr +1) J~ tT(l - tY dt f, and let p be
as in the corollary. Then,

where M/ = MrjJ~ r(l - t)" dt.

Now f,;(Xj) = zji), and zjil - Z)~l ~ (Yj + E) - (YH - E) = (Yj - Yj-l) +
2E ~ (3j2)(Yj - Yj-l)' Thus, by Lemma 4,

3 (Yj - yj-l ) M,!
= 2 Xj - Xj-l (Xj _-_--'-X-j_-;l)c-T

The bound is independent of j. Hence, f~r) EO LipA 1, where A = BTMjrxT
•

Case 1. r = 1. By Lemma 1, En*(f,;) ~ CBI M jrxn2. We now approximate
each f,; to within Llj8 = E/2 by a monotone polynomial. By Lemma 1 this
can be accomplished by a polynomial qi whose degree does not exceed
(8CB1MjrxLl)1/2 = AI(MjrxLl)l/2. The vector (Yo, YI ,... , Yk) is thus contained
in the convex hull of the vectors (qi(XO), qi(XI), ... , qi(Xk»), i = 1,2, ... ,2/'+1.
Hence there exists a convex linear combination of the q/s which gives rise to
a polynomial p which interpolates Y monotonely. Since the degree of each
qi ~ ArCM/rxLl)l/2, we have N(X; Y) ~ AI(MjrxLl)1/2.

Case 2. r ~ 2. Note that f/ has a finite number of zeros in [0, 1].
Moreover, since f,; E cr[o, 1] and ft+ l

) has jump discontinuities in [0, 1],
En(h) has exact order of magnitude Ilnr+1, while En- l (};;') has exact order of
magnitude ljnr [1, p. 14]. Thus En-l(f,;) = o(nEn(f,;», so thatf,; satisfies the
conditions of Lemma 2. Hence En*(f,;) = O(En(f,;» ~ (CrBrMjcxrnr+l)
[1, p. 13]. The proof now proceeds as in Case 1, and we obtain N(X; Y) ~
A,.(Mlo:.rLl)1/(1'+l).

EXAMPLE. Consider monotone interpolation of f(x) = X 1 / 2 on [0, 1] at
equally spaced nodes, Xj = jlk, j = 0, 1,..., k. Then M = kl /2, rx = 11k
and Ll ~ 1/2k. Thus the result of [6] yields N(X; Y) ~ Ao(MILl) ~ 2Aok3/2.
We obtain N(X; Y) ~ infr =o,1,2.... Ar[2k<r+(3/2»]I/(r+1l.
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